Educational Goals

- 1. Describe the subatomic structure of an atom.
- 2. Define the terms element and atomic symbol.
- 3. Understand how elements are arranged in the periodic table based on the number of protons they contain.
- 4. Understand how **atomic number** and **mass number** are used to indicate details of an atom's nucleus.
- 5. Know how **isotopes** of an element differ from one another.
- 6. Define the term **mole** and describe the relationship between **moles** and **molar mass**.
- 7. Given the **molar mass** of an element, convert between number of atoms, number of moles, and mass (grams).

An Introduction to Atoms

Matter (stuff) is made of _____.

Model of the Atom

Check your current model:	Draw a carbon atom.

Atoms are made of _____ particles.

There are *three* types of subatomic particles that will make up our atomic model:

Protons and neutrons are compacted together in what we call the ______ of an atom. Electrons are distributed in space around the nucleus.

• They are moving very fast in a volume surrounding the nucleus.

Atoms are mostly empty space.

Electrical Charge

There are a few fundamental properties of nature.

• Examples: Gravity, magnetism, and mass.

Another fundamental property in nature is ______

Particles *may or may not* have electrical charge.

There are two types of electrical charge; we arbitrarily call one type _____ and the other type

Every thing we discuss in this course ultimately occurs because of the interaction of these two types of charges.

Particles with *opposite charges attract* each other.

The natural attraction is called

force.

Oppositely charged particles will accelerate **toward** one another if not held apart.

Particles with *like charges repel* each other.

The natural repulsion is called

_____ force.

Like charged particles will accelerate **away** from one another if not held together.

Subatomic Particles

1) Protons

Protons are ______ charged particles located in the ______ of an atom.

The number of protons a particular atom contains determines that atom's identity.

• For example, any atom that contains just **one proton** is called *hydrogen*. An atom with **two protons** is called *helium*. An atom with **six protons** is called *carbon*.

Historically, matter with different numbers of protons, such as hydrogen, helium, and carbon were called the _____.

There are 92 elements that occur in nature. About 25 others have been man-made by slamming two atoms together causing their nuclei to combine, however these new atoms do not last long (fractions of a second up to one year), they break apart into smaller atoms.

A modern periodic table of the elements is shown on the next page.

• You can download a copy of this periodic table at: http://www.zovallearning.com/GOBlinks/ch2/periodictablezovalbasic.pdf

VIII Noble Gases	$\begin{array}{c} 2 \\ \mathbf{He} \\ 4.003 \end{array}$	10 Neon Neon 20.1797	10 Ar Argon 39.948	36 Kr	83.80	54 Xe	Xenon 131.29	86 D_	Kadon (222)		71	Lu	Lutetium 174.967	103	Lr	Lawrencium (262)
	VII Halogens	9 F Fluorine 8.998403 2	e La		2 4		47	85	Atatine (210)		70		Ytterbium I 173.04 1	102	No	1 Nobelium La (259)
	N H	4 n	. 9		= .		E 0	84 5	Polonium //		69			101	Md	1 Mendelevium N (258)
	>	7 N Nitrogen 0 14.0067 1	rus 162				ĥ.	83	th 338		68		Erbium T 167.26 16	100	Fm	Fermium Me (257)
	IV	6 C Carbon N 12.0107	15				0	82	- 1		67		Holmium E 164.93033 1	66		Einsteinium Fo (252) (
	Ш	5 Boron C Boron C 12			- m		а <u>8</u>		m 33		99		Dysprosium Hc 162.50 164			Californium Ein (251) (
		B B	Alu 26	Zn			4 B				65		Terbium Dys 158.92534 16	5 L6	k	Berkelium Cali (247) (2
			·						L Hercury 557 200.59							
ents				29 Cu	63.54	Ag		79 	19		64		Gadolinium 157.25			1 Curium (247)
leme				28 Nickel	58.6934	Pd	Palladium 106.42	78	FL Platinum 195.078		63	Eu	Europium 151.964	95	Am	n Americium (243)
Table of the Elements				$\mathbf{C0}^{\text{Colt}}$	58.933194	⁴ .7	Rhodium 102.90550	77 	LF Iridium 192.217	109 Mt ⁽²⁶⁶⁾	62	Sm	Samarium 150.36	94	Pu	Plutonium (244)
le of				26 Fe	55.845	Ru	Ruthenium 101.07	76 2	Osmium 190.23	108 Hs Hassium (265)	61		Promethium (145)	93	dN N	Neptunum (237)
				25 Mn	54.938044	45 Tc	Technetium (98)	75	Ke Rhenium 186.207	107 Bh ^{Bohrium} (262)	09		Neodymium 144.24			Uranium 238.0289
Periodic				24 \mathbf{Cr}			m	74	Tungsten 183.84	106 Seaborgium (263)	59	\Pr	Praseodymium 140.90766	91		Protactinium 231.03588
Per				23 V	7 anaunin 50.9415 11		n 37	73	L A Tantalum 180.9479	105 Dubnium (262)	58		Cerium 140.116	90		Thorium 232.0377
				22 Ti	47.867	Zr	Zirconium 91.224	72	Hafnium 178.49	104 Rf Rutherfordium (261)	L					
				21 Sc	34.955908	YC Y	Yttrium 88.90584	57	La Lanthanum 138.90545	$\begin{array}{c} 89\\ \mathbf{Ac}\\ \mathbf{Actinium}\\ (227) \end{array}$						
	II Alkaline Earth Metals	4 Be 9.012183	$\mathbf{Mg}^{1.2}_{\mathrm{Magnesium}}$	20 Ca			в	56 D	Ba Barium 137.327	88 Ra (226)						
I Alkali Metals	1 H Hydrogen 1.0079	3 Li ^{Lithium} 6.941	ן חח 770	19 K	39.0983	Rb	Kubidium 85.4678	55	CS Cesium 132.90545	$\underset{\text{Francium}}{87}$						

Note that each element is represented by its **atomic** ______ (a one- or two-letter name abbreviation) and occupies a box in the table.

Above each element's symbol is the ______.

The **atomic number** tells us the ______ of _____ in an atom of that particular element.

- Example: Look at carbon, symbol C, atomic number 6. Carbon has an atomic number of *six* because an atom with six protons is called carbon. If it had *seven* protons, it would not be carbon it would be nitrogen and have an atomic number of 7.
- Atomic number can be abbreviated using "Z."
 - For example, with carbon, $\mathbf{Z} = 6$, with hydrogen, $\mathbf{Z} = 1$.
- Elements are ordered in the periodic table by *increasing* atomic number.

2) Electrons

Electrons are *negatively charged* subatomic particles.

They are light-weight particles that move extremely fast.

- For the remainder of chapter 2 we can visualize the electrons as bees flying around a beehive (the bee hive represents the nucleus). In chapter 3 you will learn more details about the regions around the nucleus that the electrons can occupy.
- Electrons are very light compared to protons and neutrons.
- Protons and neutrons are about 2000 times **heavier** than electrons and therefore compose most of an atom's mass.

<u>3</u>) Neutrons

Neutrons are located in the _____ (with the protons).

Neutrons **do not** have electrical charge; we say they are *electrically* ______.

The names, charges, and symbols for the three types of subatomic particles are shown below:

SUBATOMIC PARTICLE	SYMBOL	CHARGE
PROTON	p	positive (1+)
NEUTRON	п	none
ELECTRON	e or e⁻	negative (1-)

How many neutrons are in an atom?

We *cannot determine* the number of neutrons in an atom based on the number of protons.

• This is because atoms of a particular element *do not all have the same number of neutrons*.

Example: Some carbon atoms have *six neutrons*, some have *seven neutrons*, and some have *eight neutrons*.

• These three different forms of carbon are called ______ of carbon.

Isotopes are defined as atoms with the *same* number of protons (same element), but a *different* number of neutrons.

You learned that an atom's "atomic number (Z)" is the number of protons it contains.

When considering the number of neutrons in an isotope of a particular atom, it is useful to learn a new term called "**mass number**."

The ______ of an atom is defined as *the number of protons plus the number of neutrons*.

mass number = number of protons + number of neutrons

Mass number can be abbreviated using "A."

	SYMBOL	DEFINITION
ATOMIC NUMBER	Z	number of protons
MASS NUMBER	A	number of protons + number of neutrons

Example: How many neutrons are in a sodium (Na) atom that has a mass number of 23?

Take notes here:

Understanding Check: How many neutrons are in a carbon (C) atom that has a *mass number* of 14?

You will often see one of two "shorthand notation" methods used to differentiate the various isotopes:

Method 1: Write the *element symbol*, a dash, then the *mass number* (A)

Let's use our three isotopes of carbon for examples:

NUMBER OF NEUTRONS	SHORTHAND NOTATION
6	C-12
7	C-13
8	C-14

Method 2: Write the *element symbol*, we superscript the *mass number* (A) to the left of the symbol.

NUMBER OF NEUTRONS	SHORTHAND
IN THE CARBON ATOM	NOTATION
6	¹² C
7	¹³ C
8	¹⁴ C

- Although redundant, sometimes the atomic number (Z) is also subscripted to the left of the symbol.
 - For example:

Understanding Check: Fill in the blanks for the following isotopes:

 a. ¹⁴N number of protons _____ number of neutrons _____ atomic number ____ mass number ____
 number of neutrons _____ atomic number ____ mass number _____

 b. ¹⁵N number of protons _____ number of neutrons _____ atomic number _____ mass number _____
 atomic number _____ mass number _____

 c. ⁴²Ca number of protons _____ number of neutrons _____ atomic number _____ mass number _____
 atomic number _____ mass number _____

 d. ¹H number of protons _____ number of neutrons _____ atomic number _____ mass number _____
 atomic number ______

Atoms are *electrically neutral*; their total charge is equal to zero.

• They have the same number of electrons (-) as protons (+), so the positive and negative charges add up to zero (cancel).

The Mole

Atoms are so tiny and small in mass that it is more convenient to do calculations with a large number of atoms

- Just like bakers and chefs use eggs by the dozen, chemists use atoms and molecules by the mole.
 - A ______ is a counting unit used for atoms and molecules.
 - A _______ is any term that refers to a specific number of things.
 - a couple = 2 items (e.g. people)
 - a dozen = 12 items (e.g. eggs, donuts)
 - a mole = 6.022×10^{23} (e.g. atoms, molecules)

The Chemist's Mole

- **One mole** of anything represents 6.022×10^{23} of the things.
- This is referred to as **Avogadro's number**.
- 1 mole = 6.022×10^{23}

Understanding Check: How many atoms are in *1 mole* of helium (He)?

Because the mole is the standard counting unit used to indicate the number of atoms present in a sample, it is useful to **convert** back and forth from *moles* to *atoms*.

- Use our *conversion factor* method.
- The *relationship* between # of atoms and moles is:
 - 1 mole = 6.022×10^{23}

Take notes here:

You try one: How many moles are 2.9×10^{12} F atoms?

The Mole and Mass

- The ______ of an element is equivalent to the mass (in grams) of one mole of the element.
- Molar mass is given in the *periodic table* ______ the symbol of the element.
 - Molar mass units: ______
 - Example: Carbon molar mass is _____
 - Another example:
 - 1 mole of argon (Ar) = 39.95 g
 - Molar mass of argon is 39.95 g/mole

Understanding Check:

1 mole of C =_____ grams of carbon (C) = _____ atoms of C

1 mole of Al = _____grams of aluminum (Al) = _____atoms of Al

Because the molar mass gives us the ______between the number of moles and the mass of an element, it can be used to ______back and forth between moles and mass (in grams).

- Use our conversion factor method

Example: Carbon

- The relationship between # of moles of carbon and grams of carbon is:
 - 1 mole Carbon = 12.01 g
- This can be written as conversion factors:

Example Problem: What is the mass of 0.770 moles of carbon?

Take notes here:

You try one: How many moles are there in 50.0 g of lead?

Converting Between the Number of Atoms and Grams

Example: (atoms to grams) What is the mass of 2.50×10^{21} Lead (Pb) atoms?

Take notes here:

You try one: (grams to atoms) Compute the number atoms in 10.0 g of Aluminum (Al)?

The Periodic Table

As we continue to build our model of atoms and matter in later chapters, we will gain more understanding of why the elements are arranged as they are in the periodic table and how the periodic table can be very useful in predicting the chemical and physical properties of matter.

CATEGORY	PROPERTIES
Metals	•Good conductors of heat and electricity •Ductile (can be pulled into wires and pounded flat) •Have a luster
Nonmetals	 Poor conductors of heat and electricity Brittle (break or shatter if bent or hammered)
Metalloids (sometimes called Semimetals)	Intermediate conductors of heat and electricity

Classification of Elements Based on Electrical and Heat Conduction

1]	Metals Nonmetals Metalloids													2		
Η		(Green) (Blue) (Red)															He
3	4												6	7	8	9	10
Li	Be						В	С	Ν	0	F	Ne					
11	12						13	14	15	16	17	18					
Na	Mg												Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
										Cf	Es	Fm	Md	No	Lr		

Elements in the periodic table are arranged in columns called ______ (sometimes, but much less often, called **Families**).

• Sometimes these groups are shown with group numbers in Roman numerals above the column.

	Ι																	VIII
1	1			s-Bl	lock		p-B	lock										2
1	Η	II											III	IV	V	VI	VII	He
2	3	4		d-B	lock	f-Block 5 6 7 8 9											9	10
Z	Li	Be							B	С	Ν	0	F	Ne				
3	11	12				Tra	insitio	n Me	tals				13	14	15	16	17	18
5	Na	Mg											Al	Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
-	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
3	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	87	88	89	104	105	106	107	108	109									
/	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
					_							(Inn	er) Tr	ansiti	on Me	etals		
	58 59 60 61 62 63 64 65							65	66	67	68	69	70	71				
	6	L	antha	inides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	7		Acti	nides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	/				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The elements in **Group I** (also called Group 1A) are called the _____ *metals*.

• Although it is not a metal, note that hydrogen is in this group *for reasons that I will discuss in chapter 3*.

The elements in **Group II** (also called group 2A) are called the ______ *earth metals*.

The elements in **Group VII** (also called group 7A) are called the ______.

The elements in **Group VIII** (also called group 8A) are called the _____.

The elements in **Group I** and **Group II** are in what is called the ______ **-Block**.

The elements in Groups **III - VIII** are in the _____ -Block.

The ______, *located between the s- and p-Blocks*, are in the _____**-Block**.

The Inner Transition Metals, located in the bottom two rows of the periodic table are in the _____-Block.

• They are called *lanthanides* (top row of the *f*-*Block*) and *actinides* (bottom row of the *f*-*Block*).

The *rows* in the periodic table are called ______.

• The periods are often numbered to the left of each row.