Chapter 2 Lecture Notes: Atoms

Educational Goals

1. Describe the subatomic structure of an atom.
2. Define the terms element and atomic symbol.
3. Understand how elements are arranged in the periodic table based on the number of protons they contain.
4. Understand how atomic number and mass number are used to indicate details of an atom's nucleus.
5. Know how isotopes of an element differ from one another.
6. Define the term mole and describe the relationship between moles and molar mass.
7. Given the molar mass of an element, convert between number of atoms, number of moles, and mass (grams).

An Introduction to Atoms

Matter (stuff) is made of \qquad .

Model of the Atom

Check your current model: Draw a carbon atom.

Atoms are made of \qquad particles.

There are three types of subatomic particles that will make up our atomic model:

1. \qquad
2.
3.

\qquad
\qquad

Protons and neutrons are compacted together in what we call the \qquad of an atom. Electrons are distributed in space around the nucleus.

- They are moving very fast in a volume surrounding the nucleus.

Atoms are mostly empty space.

Electrical Charge

There are a few fundamental properties of nature.

- Examples: Gravity, magnetism, and mass.

Another fundamental property in nature is \qquad
\qquad .
Particles may or may not have electrical charge.
There are two types of electrical charge; we arbitrarily call one type \qquad and the other type
\qquad —.

Every thing we discuss in this course ultimately occurs because of the interaction of these two types of charges.

Particles with opposite charges attract each other.
The natural attraction is called
\qquad force.

Oppositely charged particles will accelerate toward one another if not held apart.

Particles with like charges repel each other.
The natural repulsion is called
\qquad force.
Like charged particles will accelerate away from one another if not held together.

Subatomic Particles

1) Protons

Protons are \qquad charged particles located in the \qquad of an atom.
The number of protons a particular atom contains determines that atom's identity.

- For example, any atom that contains just one proton is called hydrogen. An atom with two protons is called helium. An atom with six protons is called carbon.

Historically, matter with different numbers of protons, such as hydrogen, helium, and carbon were called the \qquad _.

There are 92 elements that occur in nature. About 25 others have been man-made by slamming two atoms together causing their nuclei to combine, however these new atoms do not last long (fractions of a second up to one year), they break apart into smaller atoms.

A modern periodic table of the elements is shown on the next page.

- You can download a copy of this periodic table at: http://www.zovallearning.com/GOBlinks/ch2/periodictablezovalbasic.pdf

		ㅇ．2空気运						スヨ咅	
								$\bigcirc 2$	
	5				的 \sim_{0}			8 ${ }^{\text {E }}$	
	＞				的的言晾め			8 年	
	\geq	－U 部氟或							2）$\underbrace{\text { migu }}$
	三							8 В 穴	$\bigcirc \underbrace{\circ}$
				으추훙				BE	
						$\therefore=\frac{5}{4}$			
$\begin{aligned} & \text { ভ. } \\ & \text { U } \end{aligned}$						－		8 \％	
								OE	
4 0 0 0									
$\underset{\sim}{5}$				N	Fo	$\therefore \approx$		8－浐	
$\begin{aligned} & \text { en } \\ & \text { 号 } \end{aligned}$					\&				
$\stackrel{\Xi}{0}$						$\underset{\sim}{\text { an }}$		O	
						N茥譟室			
					8				
							$\infty<$		

Note that each element is represented by its atomic \qquad (a one- or two-letter name abbreviation) and occupies a box in the table.

Above each element's symbol is the \qquad _.

The atomic number tells us the \qquad of \qquad in an atom of that particular element.

- Example: Look at carbon, symbol C, atomic number 6. Carbon has an atomic number of six because an atom with six protons is called carbon. If it had seven protons, it would not be carbon - it would be nitrogen and have an atomic number of 7 .
- Atomic number can be abbreviated using "Z."
- For example, with carbon, $\mathbf{Z}=6$, with hydrogen, $\mathbf{Z}=1$.
- Elements are ordered in the periodic table by increasing atomic number.

2) Electrons

Electrons are negatively charged subatomic particles.
They are light-weight particles that move extremely fast.

- For the remainder of chapter 2 we can visualize the electrons as bees flying around a beehive (the bee hive represents the nucleus). In chapter 3 you will learn more details about the regions around the nucleus that the electrons can occupy.
- Electrons are very light compared to protons and neutrons.
- Protons and neutrons are about 2000 times heavier than electrons and therefore compose most of an atom's mass.

3) Neutrons

Neutrons are located in the \qquad (with the protons).
Neutrons do not have electrical charge; we say they are electrically \qquad .
The names, charges, and symbols for the three types of subatomic particles are shown below:

SUBATOMIC PARTICLE	SYMBOL	CHARGE
PROTON	p	positive (1+)
NEUTRON	n	none
ELECTRON	e or e^{-}	negative (1-)

How many neutrons are in an atom?

We cannot determine the number of neutrons in an atom based on the number of protons.

- This is because atoms of a particular element do not all have the same number of neutrons.

Example: Some carbon atoms have six neutrons, some have seven neutrons, and some have eight neutrons.

- These three different forms of carbon are called \qquad of carbon.

Isotopes are defined as atoms with the same number of protons (same element), but a different number of neutrons.

You learned that an atom's "atomic number (Z) " is the number of protons it contains.
When considering the number of neutrons in an isotope of a particular atom, it is useful to learn a new term called "mass number."

The \qquad of an atom is defined as the number of protons plus the number of neutrons. mass number $=$ number of protons + number of neutrons
Mass number can be abbreviated using "A."

	SYMBOL	DEFINITION
ATOMIC NUMBER	Z	number of protons
MASS NUMBER	A	number of protons + number of neutrons

Example: How many neutrons are in a sodium (Na) atom that has a mass number of 23?
Take notes here:

Understanding Check: How many neutrons are in a carbon (\mathbf{C}) atom that has a mass number of $\mathbf{1 4}$?

You will often see one of two "shorthand notation" methods used to differentiate the various isotopes:
Method 1: Write the element symbol, a dash, then the mass number (A)
Let's use our three isotopes of carbon for examples:

NUMBER OF NEUTRONS IN THE CARBON ATOM	SHORTHAND NOTATION
$\mathbf{6}$	$\mathrm{C}-12$
$\mathbf{7}$	$\mathrm{C}-13$
$\mathbf{8}$	$\mathrm{C}-14$

Method 2: Write the element symbol, we superscript the mass number (A) to the left of the symbol.

NUMBER OF NEUTRONS IN THE CARBON ATOM	SHORTHAND NOTATION
6	${ }^{12} \mathrm{C}$
7	${ }^{13} \mathrm{C}$
8	${ }^{14} \mathrm{C}$

- Although redundant, sometimes the atomic number (Z) is also subscripted to the left of the symbol.
- For example:

$$
{ }_{6}^{12} \mathrm{C}
$$

Understanding Check: Fill in the blanks for the following isotopes:
a. ${ }^{14} \mathrm{~N}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
b. ${ }^{15} \mathrm{~N}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
c. ${ }^{42} \mathbf{C a}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
d. ${ }^{1} \mathbf{H}$ number of protons number of neutrons atomic number \qquad mass number \qquad
Atoms are electrically neutral; their total charge is equal to zero.

- They have the same number of electrons (-) as protons (+), so the positive and negative charges add up to zero (cancel).

The Mole

Atoms are so tiny and small in mass that it is more convenient to do calculations with a large number of atoms

- Just like bakers and chefs use eggs by the dozen, chemists use atoms and molecules by the mole.
- A \qquad is a counting unit used for atoms and molecules.
- A \qquad is any term that refers to a specific number of things.

$$
-\quad \text { a couple }=2 \text { items (e.g. people) }
$$

$-\quad$ a dozen $=12$ items (e.g. eggs, donuts)

- a mole $=6.022 \times 10^{23}$ (e.g. atoms, molecules)

The Chemist's Mole

- One mole of anything represents 6.022×10^{23} of the things.
- This is referred to as Avogadro's number.
- 1 mole $=6.022 \times 10^{23}$

Understanding Check: How many atoms are in $\mathbf{1}$ mole of helium (He)? \qquad
Because the mole is the standard counting unit used to indicate the number of atoms present in a sample, it is useful to convert back and forth from moles to atoms.

- Use our conversion factor method.
- The relationship between \# of atoms and moles is:
- 1 mole $=6.022 \times 10^{23}$

$$
\left.\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atoms }}\right)<\begin{array}{c}
\text { Conversion } \\
\text { Factors }
\end{array}\right)\left(\frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}\right)
$$

Example: How many carbon atoms are there in 0.100 mole of carbon?
Take notes here:

You try one: How many moles are $2.9 \times 10^{12} \mathrm{~F}$ atoms?

The Mole and Mass

- The \qquad
\qquad of an element is equivalent to the mass (in grams) of one mole of the element.
- Molar mass is given in the periodic table \qquad the symbol of the element.
- Molar mass units: \qquad
- Example: Carbon - molar mass is \qquad
- Another example:
- 1 mole of argon $(\mathrm{Ar})=39.95 \mathrm{~g}$
- Molar mass of argon is $39.95 \mathrm{~g} / \mathrm{mole}$

Understanding Check:

1 mole of $\mathrm{C}=$ \qquad grams of carbon $(\mathrm{C})=$ \qquad atoms of C

1 mole of $\mathrm{Al}=$ \qquad grams of aluminum $(\mathrm{Al})=$ \qquad atoms of Al

Because the molar mass gives us the \qquad between the number of moles and the mass of an element, it can be used to \qquad back and forth between moles and mass (in grams).

- Use our conversion factor method

Example: Carbon

- The relationship between \# of moles of carbon and grams of carbon is:
- 1 mole Carbon $=12.01 \mathrm{~g}$
- This can be written as conversion factors:

Example Problem: What is the mass of 0.770 moles of carbon?
Take notes here:

You try one: How many moles are there in 50.0 g of lead?

Converting Between the Number of Atoms and Grams

Example: (atoms to grams) What is the mass of $2.50 \times 10^{21} \mathrm{Lead}(\mathrm{Pb})$ atoms?
Take notes here:

You try one: (grams to atoms) Compute the number atoms in 10.0 g of Aluminum (Al)?

The Periodic Table

As we continue to build our model of atoms and matter in later chapters, we will gain more understanding of why the elements are arranged as they are in the periodic table and how the periodic table can be very useful in predicting the chemical and physical properties of matter.

Classification of Elements Based on Electrical and Heat Conduction

CATEGORY	PROPERTIES
Metals	-Good conductors of heat and electricity - Ductile (can be pulled into wires and pounded flat) •Have a luster
Monmetals	- Poor conductors of heat and electricity Metalloids (sometimes called Semimetals)
Intermediate conductors of heat and electricity	

Elements in the periodic table are arranged in columns called \qquad (sometimes, but much less often, called Families).

- Sometimes these groups are shown with group numbers in Roman numerals above the column.

(Inner) Transition Metals
6 Lanthanides
7 Actinides

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$

The elements in Group I (also called Group 1A) are called the \qquad metals.

- Although it is not a metal, note that hydrogen is in this group for reasons that I will discuss in chapter 3.
The elements in Group II (also called group 2A) are called the \qquad earth metals.

The elements in Group VII (also called group 7A) are called the \qquad _.

The elements in Group VIII (also called group 8A) are called the \qquad .

The elements in Group I and Group II are in what is called the \qquad -Block.

The elements in Groups III - VIII are in the \qquad -Block.

The \qquad , located between the s - and p-Blocks, are in the \qquad -Block.

The Inner Transition Metals, located in the bottom two rows of the periodic table are in the \qquad -Block.

- They are called lanthanides (top row of the f-Block) and actinides (bottom row of the f-Block).

The rows in the periodic table are called \qquad .

- The periods are often numbered to the left of each row.

