An Introduction to Atoms

Matter (stuff) is made of atoms.

Check your current model:

Draw a carbon atom

Model of the Atom

Atoms are made of subatomic particles.
There are three types of subatomic particles that will make up our atomic model:

$$
\begin{aligned}
& \text { protons } \\
& \frac{\text { neutrons }}{\text { electrons }}
\end{aligned}
$$

Protons and neutrons are compacted together in what we call the nucleus of an atom.

Electrons are distributed in space around the nucleus.

- They are moving very fast in a volume surrounding the nucleus.

Atoms are mostly empty space.

Electrical Charge

There are a few fundamental properties of nature.

- Examples: Gravity, magnetism, and mass.

Another fundamental property in nature is electrical charge.

Particles may or may not have electrical charge.

There are two types of electrical charge; we arbitrarily call one type positive and the other type negative.

Every thing we discuss in this course ultimately occurs because of the interaction of these two types of charges.

Electrical Charge

Particles with opposite charges attract each other.
The natural attraction is called electrostatic attractive force.

Oppositely charged particles will accelerate toward one another if not held apart.

Electrical Charge

Particles with like charges repel each other.
The natural repulsion is called electrostatic repulsive force.

Like charged particles will accelerate away from one another if not held together.

Subatomic Particles

1) Protons

Protons are positively charged particles located in the nucleus of an atom.

- The number of protons a particular atom contains determines that atom's identity.
- For example:

An atom that contains just one proton is called hydrogen. An atom with two protons is called helium.
An atom with six protons is called carbon.

Historically, matter with different numbers of protons, such as

 hydrogen, helium, and carbon were called the elements.Antoine Lavoisier (1743-1794) and his wife,
Marie-Anne Pierette Paulze (1758-1836)

Note that each element is represented by its atomic symbol (a one- or two-letter name abbreviation) and occupies a box in the table.

Above each element's symbol is the atomic number.
The atomic number tells us the number of protons in an atom of that particular element.

Atomic number can be abbreviated using "Z." For example, with carbon, $\mathbf{Z}=6$, with hydrogen, $\mathbf{Z}=1$.

Elements are ordered in the periodic table by increasing atomic number.

2) Electrons

Electrons are negatively charged subatomic particles.
They are light-weight particles that move extremely fast.
Protons and neutrons are about 2000 times heavier than electrons and therefore compose most of an atom's mass.

3) Neutrons

Neutrons are located in the nucleus (with the protons).
Neutrons do not have electrical charge; we say they are electrically neutral.

Names, charges, and symbols for the three types of subatomic particles.

SUBATOMIC PARTICLE	SYMBOL	CHARGE
PROTON	p	positive (1+)
NEUTRON	n	none
ELECTRON	e or e^{-}	negative $(1-)$

How many neutrons are in an atom?

We cannot determine the number of neutrons in an atom based on the number of protons.

- This is because atoms of a particular element do not all have the same number of neutrons.

Example: Some carbon atoms have six neutrons, some have seven neutrons, and some have eight neutrons.

- These three different forms of carbon are called isotopes of carbon.

Isotopes are defined as atoms with the same number of protons (same element), but a different number of neutrons.

You learned that an atom's "atomic number (\mathbf{Z}) " is the

 number of protons it contains.When considering the number of neutrons in an isotope of a particular atom, it is useful to learn a new term called "mass number."

The mass number of an atom is defined as the number of protons plus the number of neutrons.
mass number $=$ number of protons + number of neutrons
Mass number can be abbreviated using "A."

	SYMBOL	DEFINITION
ATOMIC NUMBER	Z	number of protons
MASS NUMBER	A	number of protons + number of neutrons

number of neutrons $=$ mass number - number of protons

Example:

How many neutrons are in a sodium (Na) atom that has a mass number of 23 ?

Take notes here:

Understanding Check:

How many neutrons are in a carbon (C) atom that has a mass number of 14 ?

You will often see one of two "shorthand notation" methods used to differentiate the various isotopes:

Method 1: Write the element symbol, a dash, then the mass number (A)

Let's use our three isotopes of carbon for examples:

NUMBER OF NEUTRONS IN THE CARBON ATOM	SHORTHAND NOTATION
$\mathbf{6}$	C-12
$\mathbf{7}$	$\mathrm{C}-13$
$\mathbf{8}$	$\mathrm{C}-14$

Method 2: Write the element symbol, we superscript the mass number (A) to the left of the symbol.

NUMBER OF NEUTRONS IN THE CARBON ATOM	SHORTHAND NOTATION
6	${ }^{12} \mathrm{C}$
7	${ }^{13} \mathrm{C}$
8	${ }^{14} \mathrm{C}$

the symbol.

- Sometimes the atomic number (Z) is also subscripted to the left of the symbol.
- For example:

Understanding Check

Fill in the blanks for the following isotopes:
a. ${ }^{14} \mathbf{N}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
b. ${ }^{15} \mathrm{~N}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
c. ${ }^{42} \mathbf{C a}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
d. ${ }^{1} \mathbf{H}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad

Atoms are electrically neutral; their total charge is equal to zero.

They have the same number of electrons (-) as protons (+), so the positive and negative charges add up to zero (cancel).

A mole is a counting unit used for atoms and molecules.

- A counting unit is any term that refers to a specific number of things.
- a couple $=2$ items (e.g. people)
- a dozen $=12$ items (e.g. eggs, donuts)
- a mole $=6.022 \times 10^{23}$ (e.g. atoms, molecules)

The Chemist's Mole

- One mole of anything represents 6.022×10^{23} of the things.
- This is referred to as Avogadro's number.
- 1 mole $=6.022 \times 10^{23}$

Understanding Check: How many atoms are in 1 mole of helium (He)?

Because the mole is the standard counting unit used to indicate the number of atoms present in a sample, it is useful to convert back and forth from moles to atoms.

- Use our conversion factor method.
- The relationship between \# of atoms and moles is:
- 1 mole $=6.022 \times 10^{23}$

$$
\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atoms }}\right)\left\langle\begin{array}{c}
\text { Conversion } \\
\text { Factors }
\end{array}\right)\left(\frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}\right)
$$

Conversion Map

Example:

What is the mass of 0.770 moles of carbon?

$0.770 \overline{\mathrm{molC}}$	12.01 g C
	1 molC

You try one: How many moles are $2.9 \times 10^{12} \mathrm{~F}$ atoms?

The Mole and Mass

The molar mass of an element is equivalent to the mass (in grams) of one mole of the element.

- Molar mass is given in the periodic_table under the symbol of the element
- Molar mass units: grams/mole
- Example: Carbon - molar mass is $\mathbf{1 2 . 0 1 \mathrm { g } / \text { mole }}$
- Examples:
- 1 mole of argon $(\mathrm{Ar})=39.95 \mathrm{~g}$
- Molar mass of argon is $39.95 \mathrm{~g} / \mathrm{mole}$

Understanding Check

1 mole of $\mathrm{C}=\ldots$ grams of $\mathrm{C}=\ldots$ atoms of C

1 mole of $\mathrm{Al}=\ldots \quad$ grams of $\mathrm{Al}=\ldots$ atoms of Al

The Mole and Mass

- Because the molar mass gives us the relationship between the number of moles and the mass of an element, it can be used to convert back and forth between moles and mass (in grams).
- Use our conversion factor method.

Conversion Map

The Mole and Mass

Example: Carbon

- The relationship between \# of moles of carbon and grams of carbon is:
-1 mole Carbon $=12.01 \mathrm{~g}$
- This can be written as conversion factors:

$$
\left(\frac{1 \text { mole C }}{12.01 \text { grams C }}\right) \stackrel{\begin{array}{c}
\text { Conversion } \\
\text { Factors }
\end{array}}{\substack{12.01 \text { grams C } \\
1 \text { mole C }}) ~}
$$

Example:

What is the mass of 0.770 moles of carbon?

You try one:

How many moles are there in 50.0 g of lead?
Lead $=\mathrm{Pb}$

Converting Between the Number of Atoms and Grams

Example: grams to moles

What is the mass of $2.50 \times 10^{21} \mathrm{~Pb}$ atoms?

$2.50 \times 10^{21} \mathrm{~Pb}$ atoms	$1 \overline{\text { mote } \mathrm{Pb}}$	207.2 g Pb
	6.022×10^{23} atoms Pb	1 mote Pb

You try one: grams to moles

Compute the number atoms in 10.0 g of Aluminum (A1)?

Classification of Elements Based on Electrical and Heat Conduction

CATEGORY	PROPERTIES
Metals	-Good conductors of heat and electricity -Ductile (can be pulled into wires and pounded flat) -Have a luster
Nonmetals	-Poor conductors of heat and electricity -Brittle (break or shatter if bent or hammered)
Metalloids	Intermediate conductors of heat and electricity
(sometimes called Semimetals)	

Classification of Elements Based on Electrical and Heat Conduction

Elements in the periodic table are arranged in columns called Groups (sometimes, but much less often, called Families).

- Sometimes these groups are shown with group numbers in Roman numerals above the column.

(Inner) Transition Metals

6	Lanthanides Actinides	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \text { Pr } \end{aligned}$	$\begin{array}{r} 60 \\ \text { Nd } \\ \hline \end{array}$	$\begin{gathered} 61 \\ \mathbf{P m} \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ \hline \end{gathered}$	$\begin{aligned} & 63 \\ & \text { Eu } \\ & \hline \end{aligned}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{aligned} & 65 \\ & \text { Tb } \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathbf{H o} \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & \mathbf{E r} \end{aligned}$	$\begin{gathered} 69 \\ \mathbf{T m} \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \end{gathered}$
		90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	$\mathbf{L r}$

The elements in Group I (also called Group 1A) are called the alkali metals.

- Although it is not a metal, note that hydrogen is in this group for reasons that I will discuss in chapter 3.

The elements in Group II (also called group 2A) are called the alkaline earth metals.
The elements in Group VII (also called group 7A) are called the halogens.
The elements in Group VIII (also called group 8A) are called the noble gases.
The elements in Group I and Group II are in what is called the \underline{s}-Block.
The elements in Groups III - VIII are in the \boldsymbol{p}-Block.
The transition metals, located between the s - and p-Blocks, are in the \underline{d}-Block.
The Inner Transition Metals, located in the bottom two rows of the periodic table are in the f-Block.

- They are called lanthanides (top row of the f-Block) and actinides (bottom row of the f-Block).

The rows in the periodic table are called Periods.

- The periods are often numbered to the left of each row.

